267 research outputs found

    Marquette University Slavic Institute Papers NO. 16

    Get PDF
    https://epublications.marquette.edu/mupress-book/1008/thumbnail.jp

    Fasting reveals largely intact systemic lipid mobilization mechanisms in respiratory chain complex III deficient mice

    Get PDF
    Mice homozygous for the human GRACILE syndrome mutation (Bcs1l (c.A232G)) display decreased respiratory chain complex III activity, liver dysfunction, hypoglycemia, rapid loss of white adipose tissue and early death. To assess the underlying mechanism of the lipodystrophy in homozygous mice (Bcs1l(p.S)(78G)), these and wild-type control mice were subjected to a short 4-hour fast. The homozygotes had low baseline blood glucose values, but a similar decrease in response to fasting as in wild-type mice, resulting in hypoglycemia in the majority. Despite the already depleted glycogen and increased triacylglycerol content in the mutant livers, the mice responded to fasting by further depletion and increase, respectively. Increased plasma free fatty acids (FAs) upon fasting suggested normal capacity for mobilization of lipids from white adipose tissue into circulation. Strikingly, however, serum glycerol concentration was not increased concomitantly with free FM, suggesting its rapid uptake into the liver and utilization for fuel or gluconeogenesis in the mutants. The mutant hepatocyte mitochondria were capable of responding to fasting by appropriate morphological changes, as analyzed by electron microscopy, and by increasing respiration. Mutants showed increased hepatic gene expression of major metabolic controllers typically associated with fasting response (Ppargc1a, Fgf21, Cd36) already in the fed state, suggesting a chronic starvation-like metabolic condition. Despite this, the mutant mice responded largely normally to fasting by increasing hepatic respiration and switching to FA utilization, indicating that the mechanisms driving these adaptations are not compromised by the CIII dysfunction. Summary statement: Bcs1l mutant mice with severe CIII deficiency, energy deprivation and post-weaning lipolysis respond to fasting similarly to wild-type mice, suggesting largely normal systemic lipid mobilization and utilization mechanisms.Peer reviewe

    Citizen motivation on the go: the role of psychological empowerment

    Get PDF
    Although advances in technology now enable people to communicate ‘anytime, anyplace’, it is not clear how citizens can be motivated to actually do so. This paper evaluates the impact of three principles of psychological empowerment, namely perceived self-efficacy, sense of community and causal importance, on public transport passengers’ motivation to report issues and complaints while on the move. A week-long study with 65 participants revealed that self-efficacy and causal importance increased participation in short bursts and increased perceptions of service quality over longer periods. Finally, we discuss the implications of these findings for citizen participation projects and reflect on design opportunities for mobile technologies that motivate citizen participation.info:eu-repo/semantics/publishedVersio

    Query Scrambling for Bursty Data Arrival.

    Get PDF
    Distributed databases operating over wide-area networks, such as the Internet, must deal with the unpredictable nature of the performance of communication. The response times of accessing remote sources may vary widely due to network congestion, link failure, and other problems. In this paper we examine a new class of methods, called query scrambling, for dealing with unpredictable response times. Query scrambling dynamically modifies query execution plans on-the-fly in reaction to unexpected delays in data access. We explore various choices in the implementation of these methods and examine, through a detailed simulation, the effects of these choices. Our experimental environment considers pipelined and non-pipelined join processing in a client with multiple remote data sources and it focuses on bursty arrivals of data. We identify and study a number of the basic trade-offs that arise when designing scrambling policies for the bursty environment. Our performance results show that query scrambling is effective in hiding the impact of delays on query response time for a number of different delay scenarios. (Also cross-referenced as UMIACS-TR-96-84

    Equal Time for Data on the Internet with WebSemantics

    Get PDF
    Projet RODINRésumé disponible dans le fichier PD

    Scrambling Query Plans to Cope With Unexpected Delays

    Get PDF
    Accessing numerous widely-distributed data sources poses significant new challenges for query optimization and execution. Congestion or failure in the network introduce highly-variable response times for wide-area data access. This paper is an initial exploration of solutions to this variability. We investigate a class of dynamic, run-time query plan modification techniques that we call query plan scrambling. We present an algorithm which modifies execution plans on-the-fly in response to unexpected delays in data access. The algorithm both reschedules operators and introduces new operators into the plan. We present simulation results that show how our technique effectively hides delays in receiving the initial requested tuples from remote data sources. (Also cross-referenced as UMIACS-TR-96-35

    Updating Typical XML Views

    Full text link

    Improving corporate governance in state-owned corporations in China: which way forward?

    Get PDF
    This article discusses corporate governance in China. It outlines the basic agency problem in Chinese listed companies and questions the effectiveness of the current mechanisms employed to improve their standards of governance. Importantly, it considers alternative means through which corporate practice in China can be brought into line with international expectations and stresses the urgency with which this task must be tackled. It concludes that regulators in China must construct a corporate governance model which is compatible with its domestic setting and not rush to adopt governance initiatives modelled on those in cultures which are fundamentally different in the hope of also reproducing their success

    Respiratory chain complex III deficiency due to mutated BCS1L : a novel phenotype with encephalomyopathy, partially phenocopied in a Bcs1l mutant mouse model

    Get PDF
    Background: Mitochondrial diseases due to defective respiratory chain complex III (CIII) are relatively uncommon. The assembly of the eleven-subunit CIII is completed by the insertion of the Rieske iron-sulfur protein, a process for which BCS1L protein is indispensable. Mutations in the BCS1L gene constitute the most common diagnosed cause of CIII deficiency, and the phenotypic spectrum arising from mutations in this gene is wide. Results: A case of CIII deficiency was investigated in depth to assess respiratory chain function and assembly, and brain, skeletal muscle and liver histology. Exome sequencing was performed to search for the causative mutation(s). The patient's platelets and muscle mitochondria showed respiration defects and defective assembly of CIII was detected in fibroblast mitochondria. The patient was compound heterozygous for two novel mutations in BCS1L, c.306A > T and c.399delA. In the cerebral cortex a specific pattern of astrogliosis and widespread loss of microglia was observed. Further analysis showed loss of Kupffer cells in the liver. These changes were not found in infants suffering from GRACILE syndrome, the most severe BCS1L-related disorder causing early postnatal mortality, but were partially corroborated in a knock-in mouse model of BCS1L deficiency. Conclusions: We describe two novel compound heterozygous mutations in BCS1L causing CIII deficiency. The pathogenicity of one of the mutations was unexpected and points to the importance of combining next generation sequencing with a biochemical approach when investigating these patients. We further show novel manifestations in brain, skeletal muscle and liver, including abnormality in specialized resident macrophages (microglia and Kupffer cells). These novel phenotypes forward our understanding of CIII deficiencies caused by BCS1L mutations.Peer reviewe
    corecore